Optical absorption of sodium boro vanadate glass system

M. M. El - Oker^a, M. Farouk^a, S. A. Yossef^a, A. A. Saad^b
a. Department of Physics - Faculty of Science –
AlAzhar university
b. Shoubra Faculty of Enigeering – Banha University

Abstract

Glass system of composition x(Na₂B₄O₇.10H₂O - (100-x) V₂O₅)

where x = 5, 7.5, 10, 12.5, 15 and 20 mol %, and the silver oxide (Ag₂O) is added as weight percentage (0.001) were prepared from the powder form of (Analar – grade).

Optical absorption measurements in the spectral range (325-2500 nm) were carried out at room temperature. No sharp absorption edges was observed indicating the non – crystalline nature of the samples. It is observed that the fundamental absorption edge shifts to higher wavelength (low energy) with increasing V_2O_5 content. However the sample containing 10-mol % V_2O_5 exhibit opposite trend. The optical band gap for all compositions ranging between 3.85 eV and 3.9 eV. However sample of 10 V_2O_5 exhibit high value 4.2 eV. The value of E_e shows slight decrease by increase V_2O_5 mol %. The optical absorption spectrum exhibits one band at 27780 cm⁻¹ characteristic of VO^{2+} ions in tetragonal symmetry. The band has been assigned as $2B2g \longrightarrow 2B1g$ transition.